Super-luminescent jet light generated by femtosecond laser pulses

نویسندگان

  • Zhijun Xu
  • Xiaonong Zhu
  • Yang Yu
  • Nan Zhang
  • Jiefeng Zhao
چکیده

Phenomena of nonlinear light-matter interaction that occur during the propagation of intense ultrashort laser pulses in continuous media have been extensively studied in ultrafast optical science. In this vibrant research field, conversion of the input laser beam into optical filament(s) is commonly encountered. Here, we demonstrate generation of distinctive single or double super-luminescent optical jet beams as a result of strong spatial-temporal nonlinear interaction between focused 50 fs millijoule laser pulses and their induced micro air plasma. Such jet-like optical beams, being slightly divergent and coexisting with severely distorted conical emission of colored speckles, are largely different from optical filaments, and obtainable when the focal lens of proper f-number is slightly tilted or shifted. Once being collimated, the jet beams can propagate over a long distance in air. These beams not only reveal a potentially useful approach to coherent optical wave generation, but also may find applications in remote sensing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infrared extension of the super continuum generated by femtosecond terawatt laser pulses propagating in the atmosphere.

We investigated the spectral behavior of a white-light continuum generated in air by 2-TW femtosecond laser pulses at 800 nm. The spectrum extends at least from 300 nm to 4.5 mum. From 1 to 1.6 mum the continuum's intensity increases strongly with the laser energy and depends on the initial chirp.

متن کامل

Observation of sum-frequency-generation-induced cascaded four-wave mixing using two crossing femtosecond laser pulses in a 0.1 mm beta-barium-borate crystal.

We demonstrate the simultaneous generation of multicolor femtosecond laser pulses spanning the wavelength range from UV to near IR in a 0.1 mm Type I beta-barium borate crystal from 800 nm fundamental and weak IR super-continuum white light (SCWL) pulses. The multicolor broadband laser pulses observed are attributed to two concomitant cascaded four-wave mixing (CFWM) processes as corroborated b...

متن کامل

Dispersive Controlling of Femtosecond Laser Radiation: New Opportunities and Developments

The paper is devoted to new trends in dispersive control techniques for ultrafast light emission. Acoustooptical dispersive delay lines for controlling the spectral components and phase composition of ultrashort laser pulses are considered. The method of super high frequency modulation of chirped femtosecond laser pulses is proposed. Theoretical approach to dispersive pulse shaping is supported...

متن کامل

GENERATION OF FEMTOSECOND LIGHT PULSES IN THE NEAR INFRARED AROUND X = 850 nm

The generation of light pulses around 100 fs was made possible by the introduction of the colliding pulse mode-locking technique [ 11. The specially designed laser produced femtosecond light pulses in the spectral range around 620 nm. The advanced understanding of the pulse shaping process and the introduction of an intracavity compensation of dispersion allowed the stable generation pulses bet...

متن کامل

White-light generation control with crossing beams of femtosecond laser pulses.

We investigated the variations in generated white-light when crossing two femtosecond laser beams in a Kerr medium. By changing the relative delay of two interacting intense femtosecond laser pulses, we show that white-light generation can be enhanced or suppressed. With a decrease of the relative delay an enhancement of the white-light output was observed, which at even smaller delays was reve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014